jueves, 2 de julio de 2009

•Cómo actúa la grasa en el rodamiento?

La vida útil de un equipo depende de una adecuada lubricación.
Para cada elemento o componente existe un lubricante específico: hay que estudiar los factores internos y externos.
Las grasas sintéticas al igual que los aceites no se comportan mejor que los minerales a temperaturas y RPM bajas.
Las grasas y aceites sintéticos tienen mejores prestaciones que las minerales básicas a altas temperaturas y RPM.
La reacción de saponificación es necesaria únicamente para la obtención de las grasas lubricantes, más no de los aceites.
Las grasas están hechas a bases de jabones donde se aloja el aceite. Si bien hay diferentes tipos de jabones, las propiedades antifricción las brinda el aceite que se aloja en ella y los aditivos.
La aditivación mejora las prestaciones de los lubricantes.
Desde que se utilizan detergentes en los aceites, las maquinarias trabajan con menos contaminación en los mecanismos.

grasas lubricantes

No hay en el mundo máquina alguna por sencilla que sea no requiera lubricación, ya que con esta se mejora tanto el funcionamiento, como la vida útil de los equipos y maquinarias.
¿Qué es la grasa lubricante?
Se define a la grasa lubricante como una dispersión semilíquida a sólida de un agente espesante en un líquido (aceite base). Consiste en una mezcla de aceite mineral o sintético (85-90%) y un espesante. Al menos en el 90% de las grasa, el espesante es un jabón metálico, formado cuando un metal hidróxido reacciona con un ácido graso. Un ejemplo es el estearato de litio (jabón de litio).
Cuando la grasa tiene que contener propiedades especiales, se incluyen otros constituyentes que actúen como inhibidores de la oxidación y mejoren la resistencia de la película Existe otro tipo de aditivo: los estabilizadores. Cambiando el jabón, aceite o aditivo, se pueden producir diferentes calidades de grasas por una amplia gama de aplicaciones.

TIPOS DE LUBRICACIÓN
Película lubricante
La película del lubricante debe ser lo suficientemente gruesa como para separar los componentes del mecanismo. El espesor necesario de película depende de la rugosidad superficial, la existencia de partículas de suciedad y la duración requerida.
También depende de la viscosidad del medio y de las condiciones de funcionamiento, particularmente de la temperatura, velocidad de rotación y, en cierta forma, de la carga. Se pueden distinguir tres situaciones diferentes de lubricación: capa límite, lubricación hidrodinámica y lubricación elasto-hidrodinámica.
Lubricación por capa límite
Se obtiene lubricación por capa límite cuando el espesor de la película del lubricante es de una magnitud similar a las moléculas individuales de aceite. Esta condición se presenta cuando la cantidad de lubricante es insuficiente, o el movimiento relativo entre las dos superficies es demasiado lento. El coeficiente de rozamiento μ en este caso es alto, tan alto como 0.1, y sobre el incipiente contacto metálico puede alcanzar 0.5.
Cuando el coeficiente aumenta (esto es, la resistencia aumenta), las pérdidas por rozamiento también aumentan. Estas se convierten en calor, aumentando la temperatura del lubricante y reduciéndose su viscosidad de forma que la capacidad de carga de la película se reduce (el caso peor es cuando se reduce tanto que el contacto metálico se produce). Ello se puede evitar empleando aditivos que refuercen la resistencia de la película.
Lubricación hidrodinámica
La lubricación hidrodinámica o lubricación de película gruesa, se obtiene cuando las dos superficies están completamente separadas por una película coherente del lubricante. El espesor de la película excede así de las irregularidades combinadas de las superficies. El coeficiente del rozamiento es bastante menor que en la lubricación por capa límite, y en ciertos casos puede llegar a 0.005. La lubricación hidrodinámica evita el desgaste de las partes en movimiento, ya que no hay contacto metálico entre ellas.
Lubricación elasto-hidrodinámica
Esta condición se obtiene en superficies en contacto fuertemente cargadas (elásticas), esto es, superficies que cambian su forma bajo una carga fuerte, y vuelven a su forma original cuando cesa la carga.

DIFERENCIAS ENTRE GRASAS Y ACEITES
Cuando dos cuerpos sólidos se frotan entre sí, hay una considerable resistencia al movimiento sin importar lo cuidadosamente que las superficies se hayan maquinado y pulido. La resistencia se debe a la acción abrasiva de las aristas y salientes microscópicas y la energía necesaria para superar esta fricción se disipa en forma de calor o como desgaste de las partes móviles. Históricamente, el primer lubricante fue el sebo. Se utilizaba para engrasar las ruedas de los carros romanos ya en el año 1400 a.C. En la actualidad los lubricantes suelen clasificarse en grasas y aceites. Estas dos clases de lubricantes aparecieron teniendo en cuenta factores tales como velocidades de operación, temperaturas, cargas, contaminantes en el medio ambiente, tolerancias entre las piezas a lubricar, períodos de lubricación y tipos de mecanismos; Existen diferentes grados de grasas y aceites dependiendo de la necesidad que se tenga y de los factores de operación. Una mala sección es tan peligrosa como si se hubiese dejado el mecanismo sin lubricante alguno. Muchas de las fallas que ocurren en este campo tienen su origen aquí; de ahí la seguridad que se debe tener cuando se seleccione un lubricante.
• Cuándo empleo grasa? La grasa se emplea generalmente en aplicaciones que funcionan en condiciones normales de velocidad y temperatura. La grasa tiene algunas ventajas sobre el aceite. Por ejemplo, la instalación es más sencilla y proporciona protección contra la humedad e impurezas. Generalmente se utiliza en la lubricación de elementos tales como cojinetes de fricción y antifricción, levas, guías, correderas, piñonería abierta algunos rodamientos.
• Cuándo empleo aceite? Se suele emplear lubricación con aceite cuando la velocidad o la temperatura de funcionamiento hacen imposible el empleo de la grasa, o cuando hay que evacuar calor. El aceite, tiene su mayor aplicación en la lubricación de compresores, motores de combustión interna, reductores, motorreductores, transformadores, sistemas de transferencia de calor, piñoneras abiertas, cojinetes de fricción y antifricción y como fluidos hidráulicos.
• La función del lubricante es: Formar una película entre los componentes en movimiento, para evitar el contacto metálico. La película debe ser suficientemente gruesa para obtener una lubricación satisfactoria, incluso bajo fuertes cargas, variaciones grandes de temperatura y vibraciones; Reducir el rozamiento y eliminar el desgaste; Proteger contra la corrosión; Obturar (en el caso de la grasa) contra impurezas tales como suciedad, polvo, humedad o agua.
• Concepto de grasas lubricantes: La primera grasa lubricante se fabricó en 1872. Desde el principio las grasas se basaron en jabones cálcicos y líticos. En 1940 se desarrollaron las grasas líticas, y en una década después se lanzaron las grasas de jabón compuesto de aluminio. La grasa es un producto que va desde sólido a semilíquido y es producto de la dispersión de un agente espesante y un líquido lubricante que dan las prosperidades básicas de la grasa. Las grasas convencionales, generalmente son aceites que contienen jabones como agentes que le dan cuerpo. El tipo de jabón depende de las necesidades que se tengan y de las propiedades que debe tener el producto. La propiedad más importante que debe tener la grasa es la de ser capaz de formar una película lubricante lo suficientemente resistente como para separar las superficies metálicas y evitar el contacto. Existen grasas en donde el espesante no es jabón sino productos, como arcillas de bentonita. El espesor o consistencia de una grasa depende del contenido del espesante que posea, puede fluctuar entre un 5% y un 35% por peso según el caso. El espesante es el que le confiere propiedades tales como resistencia al agua, capacidad de sellar y de resistir altas temperaturas sin variar sus propiedades ni descomponerse

PROPIEDADES Y COMPONENTES DE LAS GRASAS
Hay ciertos factores a tener en cuenta cuando se habla de una grasa, como por ejemplo: •Viscosidad
La viscosidad es una de las propiedades mas importantes de un líquido y mas rápidamente observada. Es una medida de rozamiento que acontece entre las diferentes capas cuando un líquido se pone en movimiento. En la vida diaria este fenómeno no es de interés real, pero en la industria el concepto de viscosidad tiene un significado considerable. Es un dato principal en el proceso de fabricación y en la inspección del proceso acabado; en el empleo de la lubricación por aceite, la viscosidad es muy importante al seleccionar el lubricante adecuado. La viscosidad se especifica en mm²/s, aunque también se indica algunas veces en cSt (centistoke). Normalmente se indica para 40 y 100ºC, aunque en ciertos casos se pueden usar temperaturas de 37.8 (100º F), 50 y 98.9ºC (210º F).
• Estabilidad mecánica
Ciertas grasas, particularmente las líticas de los tipos antiguos, tienen una tendencia para ablandarse durante el trabajo mecánico, pudiendo dar lugar a pérdidas. En instalaciones con vibración, el trabajo es particularmente severo, ya que la grasa está continuamente vibrando en los elementos lubricados.
• Miscibilidad
En los reengrases, hay que tener el máximo cuidado de no usar grasas diferentes a las originales. De hecho hay tipos de grasas que no son compatibles; si dos de estas grasas se mezclan, la mezcla resultante tiene normalmente una consistencia más blanda que puede causar la pérdida de grasa y fallo en la película lubricante.
BASES Y JABONES
Las bases son las que determinan las propiedades de las grasas. A continuación nombramos algunas:
Bases Parafínicas (CnH2N+2)
Son relativamente estables a altas temperaturas, pero por el alto contenido de parafinas que poseen, no funciona satisfactoriamente a bajas temperaturas. Las mismas dentro de aceite, forman partes sólidas que en ciertas maquinarias diseñadas solo para aceite, pueden tapar los conductos de lubricación.
Bases Nafténicas (CnH2n)
Es una base lubricante que determina la mayor parte de las características de la grasa, tales como: viscosidad, índice de viscosidad (I.V), resistencia a la oxidación (TAN) y punto de fluidez. Frecuentemente contienen una elevada proporción de asfalto; a altas temperaturas son menos estables que las parafínicas. Generalmente no deben usarse temperaturas por encima de los 65°C.
Saponificación
Es un proceso por medio del cual una grasa (o algún otro compuesto de un ácido con alcohol) reacciona con un ÁLCALI (compuesto que neutraliza la acidez de la grasa), para formar un jabón, glicerina u otro alcohol.
Las propiedades de los jabones dependen de los ácidos grasos y de las bases metálicas utilizadas en la saponificación, esto se puede verificar mediante la reacción.
HO2Cr+ Ácido graso +H2O
Base metálica Jabón Y Agua
Las bases metálicas son las que dan las características que se quieren lograr en la grasa, Así, las de calcio, aluminio y litio imparten buena resistencia a la acción del agua y a la humedad, mientras que las de sodio permiten soportar altas temperaturas.
Las deficiencias que puedan tener las grasas se pueden modificar mediante la adición de aditivos.

DISTINTOS TIPOS DE GRASAS Y ADITIVOS EMPLEADOS
Los tipos de grasa más comunes emplean como espesante un jabón de calcio (Ca), sodio (Na), o litio (Li).
•Grasas cálcicas (Ca)
Las grasas cálcicas tienen una estructura suave, de tipo mantecoso, y una buena estabilidad mecánica. No se disuelven en agua y son normalmente estables con 1-3% de agua. En otras condiciones el jabón se separa del aceite de manera que la grasa pierde su consistencia normal y pasa de semilíquida a líquida. Por eso no debe utilizarse en mecanismos cuya temperatura sea mayor a 60ºC. Las grasas cálcicas con aditivos de jabón de plomo se recomiendan en instalaciones expuestas al agua a temperaturas de hasta 60ºC,. Algunas grasas de jabón calcio-plomo también ofrecen buena protección contra el agua salada, y por ello se utilizan en ambientes marinos. No obstante, existen otras grasas cálcicas estabilizadas por otros medios distintos del agua; éstas se pueden emplear a temperaturas de hasta 120ºC; por ejemplo, grasas cálcicas compuestas.
•Grasas sódicas (Na)
Las grasas sódicas se pueden emplear en una mayor gama de temperaturas que las cálcicas. Tienen buenas propiedades de adherencia y obturación. Las grasas sódicas proporcionan buena protección contra la oxidación, ya que absorben el agua, aunque su poder lubricante decrece considerablemente por ello. En la actualidad se utilizan grasas sintéticas para alta temperatura del tipo sodio, capaces de soportar temperaturas de hasta 120ºC.
•Grasas líticas (Li)
Las grasas líticas tienen normalmente una estructura parecida a las cálcicas; suaves y mantecosas. Tienen también las propiedades positivas de las cálcicas y sódicas, pero no las negativas. Su capacidad de adherencia a las superficies metálicas es buena. Su estabilidad a alta temperatura es excelente, y la mayoría de las grasas líticas se pueden utilizar en una gama de temperaturas más amplia que las sódicas. Las grasas líticas son muy poco solubles en agua; las que contienen adición de jabón de plomo, lubrican relativamente, aunque estén mezcladas con mucho agua. No obstante, cuando esto sucede, están de alguna manera emulsionadas, por lo que en estas condiciones sólo se deberían utilizar si la temperatura es demasiado alta para grasas de jabón de calcio-plomo, esto es, 60ºC.
•Grasas de jabón compuesto
Este término se emplea para grasas que contienen una sal, así como un jabón metálico, usualmente del mismo metal. Las grasas de jabón de calcio compuesto son las más comunes de este tipo, y el principal ingrediente es el acetato cálcico. Otros ejemplos son compuestos de Li, Na, Ba (Bario), y Al (Aluminio). Las grasas de jabón compuesto permiten mayores temperaturas que las correspondientes grasas convencionales.
•Grasas espesadas con sustancias inorgánicas
En lugar de jabón metálico se pueden emplear distintas sustancias inorgánicas como espesantes, por ejemplo, bentonita y gel de sílice. La superficie activa utilizada sobre partículas de estas sustancias absorben las moléculas de aceite. Las grasas de este grupo son estables a altas temperaturas y son adecuadas para aplicaciones de alta temperatura; son también resistentes al agua. No obstante, sus propiedades lubricantes decrecen a temperaturas normales.
•Grasas sintéticas
En este grupo se incluyen las grasas basadas en aceites sintéticos, tales como aceites ésteres y siliconas, que no se oxidan tan rápidamente como los aceites minerales. Las grasas sintéticas tienen por ello un mayor campo de aplicación. Se emplean distintos espesantes, tales como jabón de litio, bentonita y PTFE (teflón). La mayoría de las calidades están de acuerdo a determinadas normas de pruebas militares, normalmente las normas American MIL para aplicaciones y equipos avanzados, tales como dispositivos de control e instrumentación en aeronaves, robots y satélites. A menudo, estas grasas sintéticas tienen poca resistencia al rozamiento a bajas temperaturas, en ciertos casos por bajo de -70º C.
•Grasas para bajas temperaturas (LT)
Tiene una composición tal que ofrecen poca resistencia, especialmente en el arranque, incluso a temperaturas tan bajas como -50º C. la viscosidad de estas grasas es pequeña, de unos 15mm²/s a 40º C. su consistencia puede variar de NLGI 0 a NLGI 2; estas consistencias precisan unas obturaciones efectivas para evitar la salida de grasa.
•Grasas para temperaturas medias (MT)
Las llamadas grasas ¨multi-uso¨ están en este grupo. Se recomiendan para equipos con temperaturas de -30 a +110º C; por esto, se puede utilizar en la gran mayoría de los casos.
La viscosidad del aceite base debe estar entre 75 y 220mm²/s a 40º C. la consistencia es normalmente 2 ó 3 según la escala NLGI.
•Grasas para altas temperaturas (HT)
Estas grasas permiten temperaturas de hasta +150ºC. Contienen aditivos que mejoran la estabilidad a la oxidación. La viscosidad del aceite base es normalmente de unos 110mm²/s a 40º C, no debiéndose exceder mucho ese valor, ya que la grasas se puede volver relativamente rígida a temperatura de ambiente y provocar aumento del par de rozamiento. Su consistencia es NLGI 3.
•Grasas extrema presión (EP)
Normalmente una grasa EP contiene compuestos de azufre, cloro ó fósforo y en algunos casos ciertos jabones de plomo. Con ello se obtiene una mayor resistencia de película, esto es, aumenta la capacidad de carga de la película lubricante. Tales aditivos son necesarios en las grasas para velocidades muy lentas y para elementos medianos y grandes sometidos a grandes tensiones. Funcionan de manera que cuando se alcanzan temperaturas suficientemente altas en el exterior de las superficies metálicas, se produce una reacción química en esos puntos que evita la soldadura.
La viscosidad del aceite base es de unos 175mm²/s (máx. 200mm²/s) a 40º C. la consistencia suele corresponder a NLGI 2. En general, las grasas EP no se deben emplear a temperaturas menores de -30º C y mayores de +110º C.
•Grasas antiengrane (EM)
Las grasas con designación EM contienen bisulfuro de molibdeno (MoS2), y proporcionan una película más resistente que los aditivos EP. Son conocidas como las ¨antiengrane¨. También se emplean otros lubricantes sólidos, tales como el grafito.


ADITIVOS Y PRUEBAS
Aditivos para las grasas
Para obtener una grasa con propiedades especiales, se incluyen a menudo uno o más aditivos. Entre los existentes, relacionamos los más comunes:
Los aditivos antidesgaste mejoran la protección que la propia grasa ofrece. Es especialmente importante que el equipo en contacto esté bien protegido contra la oxidación si funciona en ambientes húmedos.
Los antioxidantes retrasan la descomposición del aceite base a alta temperatura. Esto da lugar a mayores intervalos de relubricación, manteniendo bajos los costos.
Los aditivos EP (extrema presión), por ejemplo jabones de plomo y compuestos de azufre, cloro o fósforo, aumentan la capacidad de carga de la película.
Los estabilizadores hacen posible el espesado de aceite base con jabones con los que no forma compuestos fácilmente. Generalmente, sólo se precisa poca cantidad, por ejemplo, la grasa cálcica tiene un 1 a 3% de agua como estabilizador.

PRUEBAS DE PRESTACIONES REALIZADAS A LAS GRASAS
•Prueba Almen
Una varilla cilíndrica gira dentro de un casquillo abierto, el cual se presiona contra aquella. Se añaden pesos de 0.9 Kg. en intervalos de 10 seg. y se registra la relación existente entre la carga y la iniciación del rayado.
•Prueba Timken
Se presiona un anillo cilíndrico, que gira, sobre un bloque de acero durante 10 minutos y se registra la máxima presión de iniciación del gripado.
•Prueba SAE
Se hacen girar dos rodillos a diferentes velocidades y en el mismo sentido. La carga se aumenta gradualmente hasta que se registre el fallo. En este caso hay combinación de rodamiento y deslizamiento. Se ilustra en las Fig. 5a y 5b.
•Prueba Fálex
Se hace girar una varilla cilíndrica entre dos bloques de material duro y en forma de V, que se presionan constantemente contra la varilla, con una intensidad que aumenta automáticamente. La carga y el par totales se registran en los calibradores. Ver las Fig. 6a y 6b.
•Punto de goteo
Es la temperatura a la cual la grasa pasa de su estado sólido a líquido. La prueba se realiza aumentando la temperatura de la grasa hasta que se empiece a cambiar de estado, en ese momento se toma la temperatura y se define su punto de goteo.

LUBRICACIÓN DE LOS RODAMIENTOS CON GRASA.
Supongamos que el lubricante forma una película entre los componentes del rodamiento que se están moviendo unos respecto a otros. Esta película se adhiere firmemente a las superficies que se deben separar. Cuando los componentes se mueven en relación unos con otros, la película queda expuesta a tensiones de cortadura interna. Simplificadamente, se puede decir que ello resulta en deslizamiento entre las ¨diferentes¨ capas de la película, y a rozamiento entre ellas. Un término más común de la resistencia del fluido, es la viscosidad.
Cómo actúa la grasa en el rodamiento?
El espesante, el jabón metálico, actúa como contenedor para el aceite lubricante.
El jabón forma como una malla o convolución de fibras jabonosas. Las cavidades de la malla están llenas de aceite, parecido a lo que sucede con los poros de una esponja llena de agua.
Si una esponja mojada se exprime, el agua sale de ella; podríamos decir que la esponja ¨sangra¨. Nosotros también decimos que el aceite ¨sangra¨ de la grasa, pero en esta operación la temperatura juega el principal papel. La grasa en un componente o equipo es a veces expuesta a un trabajo de ¨amasado¨, que podría dar lugar a que ¨sangre¨. Por lo tanto, se debe elegir el tipo de grasa que tenga propiedades adecuadas a los requerimientos del tipo de condiciones de funcionamiento. Por ejemplo, las altas vibraciones llevan a la elección de una grasa mecánicamente estable, pues sino es expulsada fuera del mecanismo en un continuo proceso de circulación que causa una rotura mecánica de la base de jabón metálico, destruyéndose la grasa y teniendo un contacto metálico por ruptura de la película lubricante.
IMPORTANCIA DE LA LUBRICACIÓN EN MÁQUINAS.
La vida útil de un equipo depende de una adecuada lubricación.
Para cada elemento o componente existe un lubricante específico: hay que estudiar los factores internos y externos.
Las grasas sintéticas al igual que los aceites no se comportan mejor que los minerales a temperaturas y RPM bajas.
Las grasas y aceites sintéticos tienen mejores prestaciones que las minerales básicas a altas temperaturas y RPM.
La reacción de saponificación es necesaria únicamente para la obtención de las grasas lubricantes, más no de los aceites.
Las grasas están hechas a bases de jabones donde se aloja el aceite. Si bien hay diferentes tipos de jabones, las propiedades antifricción las brinda el aceite que se aloja en ella y los aditivos.
La aditivación mejora las prestaciones de los lubricantes.
Desde que se utilizan detergentes en los aceites, las maquinarias trabajan con menos contaminación en los mecanismos.http://equipopesado28007.blogspot.com/search?q=

sistema de frenos

SISTEMA DE FRENOS TRACTORES DE ORUGAS CATERPILLAR D11R

Cuando el operador comienza a presionar el pedal del freno hacia el piso,

el sensor de posición giratorio del freno de servicio envía una señal al ECM, el cual recibe la posición del pedal del freno.
El ECM a su vez disminuye la corriente hacia los solenoides proporcionales (E), relativo a la posición del pedal. A medida que la corriente hacia el solenoide proporcional decrece, la presión piloto controlada por los solenoides proporcionales también disminuye. Una disminución en la presión piloto en los solenoides proporcionales crea una diferencia de presión a través de los carretes reductores (D) y (X). Los carretes se cambian hacia la izquierda. Este movimiento le permite al aceite de freno en las cámaras (1) y (1A) se evacue para así drenar. Por lo tanto, si el pedal del freno es solo parcialmente presionado, la presión piloto disminuirá parcialmente y solo una porción del aceite de freno se evacuara, teniendo como resultado una aplicación de freno suave. Si el pedal del freno es totalmente presionado, todo el aceite de freno se evacuara teniendo como resultado una aplicación del freno total.
Una vez que el pedal está completamente presionado y sobre el piso el interruptor del freno de servicio (fin de carrera) se abre y conecta uno de los solenoides de freno secundario (C) a la batería.
El otro solenoide de freno secundario también es energizado por el ECM. Esto evacua cualquier resto de aceite de presión piloto para drenar, haciendo cambiar los carretes reductores (D) y (X) hacia la izquierda y drenando todo el aceite de frenos desde las cámaras (1) y (1A). Esta operación resulta en una capacidad de frenado máxima. La Válvula de control de dirección y frenos está instalada en la parte superior de la caja. La válvula de control es operada eléctricamente mediante el Modulo de Control Electrónico (ECM). El ECM responde al movimiento de las palancas del Control Digital (FTC) por parte del operador. El primer movimiento de una palanca del FTC modula el desacople del embrague de dirección. La maquina realiza un giro gradual. Un mayor movimiento de la palanca del FTC modula el acople del freno y la maquina realiza un giro más brusco. El pedal de freno de pie modula el acople de ambos frenos y detiene la maquina. El interruptor del freno de estacionamiento acopla ambos frenos y evita que la maquina se mueva.
Los frenos son acoplados con fuerza de resortes. Se requiere de presión hidráulica para desacoplar los frenos. Si la presión hidráulica se pierde, los embragues de dirección se desacoplarán y los frenos se acoplararan completamente debido a la fuerza del los resortes.

La Válvula de control de dirección y frenos consiste de un cuerpo y un múltiple los cuales contienen secciones separadas para cada embrague de dirección y freno, como así también un cuerpo de válvula de freno de estacionamiento y freno secundario para las secciones del freno. Para cada embrague y freno, hay una válvula piloto operada por un solenoide proporcional, un pistón acumulador y un carrete reductor. Estos componentes operan de la misma manera para cada embrague y freno para controlar su presión.Los frenos también poseen una válvula de estacionamiento y secundaria operada por dos solenoides ON OFF. Los solenoides de la válvula de frenos (de parqueo y secundario) están conectados al interruptor del freno de estacionamiento y al interruptor del freno de servicio “fin de carrera”. Los solenoides son controlados por estos interruptores además del ECM. Las válvulas de estacionamiento y secundaria permiten al operador aplicar los frenos inmediatamente, sin modulación mediante la válvula de cierre.http://equipopesado28007.blogspot.com/search?q=

tipo de motores caterpillar

MOTORES CATERPILLAR DE LA SERIE 3500B

Esta serie introduce un sistema electrónico interactivo que sensa el espectro completo de las variables del motor y responde de acuerdo a ellas.
El Sistema de administración de motores diesel avanzada ADEM II (Advanced Diesel Engine Management) determina el instante exacto en que la inyección de combustible debe empezar y terminar. Entre tanto, los Inyectores Unitarios Electrónicos aseguran control de precisión sobre sincronización variable y geometría de combustión.
Más allá de lo electrónico, estos motores diesel serie B incorporan mejoras mecánicas significantes en su diseño.
Todos los modelos 3500 de la Serie B son motores en V en un ángulo de 60°con un ciclo de 4 carreras.

MOTOR CATERPILLAR 3508B
El motor 3508B es un motor diesel 8 en V turbocargado y posenfriado con un desplazamiento de 34.5 litros (2105 pulgadas cúbicas).



MOTOR CATERPILLAR 3512B
El motor Caterpillar 3512B es un motor diesel 12 en V posenfriado y turbocargado con un desplazamiento de 51.8 litros (3158 pulgadas cúbicas).



MOTOR CATERPILLAR 3516B
El motor Caterpillar 3516B es un motor diesel 16 en V Posenfriado y turbocargado con un desplazamiento de 69 litros (4211 pulgadas cúbicas).



MOTOR CATERPILLAR 3524B
El motor 3524B es una unidad en tándem que consta de dos bloques de motor 3512B de alta cilindrada, acoplados para funcionar como un solo motor en términos de operación, supervisión y control. El diseño de motor doble de 24 cilindros ofrece un rendimiento superior en relación a su tamaño, peso y velocidad.
El motor 3524B de alta cilindrada con sistema de inyección electrónico y turbocompresión y posenfriamiento doble suministra una potencia y una fiabilidad altas en las aplicaciones de minas más exigentes del mundo.



Componentes Electrónicos de la Serie 3500B
La serie 3500B da un gran paso a la vanguardia de la búsqueda de avances en eficiencia de combustión, economía de combustible y control de emisiones. Muchos de estos avances están en el área de motores Electrónicos.
Los Inyectores Unitarios Electrónicos también superan las expectativas de rendimiento, generando presiones de inyección 20% más altas en respuesta a la precisión de sincronización, Un canal de sensores del motor, indicadores, pantalla de cristal líquido (LCD) y otros componentes electrónicos completan la capacidad avanzada del sistema para funcionamiento, monitoreo y diagnóstico.

la mecanica medios continuos y mecanica estadistica

Existen otras áreas de la mecánica que cubren diversos campos aunque no tienen carácter global. No forman un núcleo fuerte para considerarse como disciplina.

Una de estas áreas es la mecánica de medios continuos que trata de cuerpos materiales extensos deformables y que no pueden ser tratados como sistemas con un número finito de grados de libertad. Esta parte de la mecánica trata a su vez de:

Otra de estas áreas es la mecánica estadística, que trata sistema con un gran número de grados de libertad (o sistemas de muchísimas partículas) y trata de resolver la ingente cantidad de ecuaciones que surgen por métodos estadísticos. Los resultados obtenidos coinciden con los resultados de la termodinámica. Usa tanto formulaciones de la mecánica hamiltoniana como formulaciones de la teoría de probabilidad. Existen estudios de mecánica estadística basados tanto en la mecánica clásica como en la mecánica cuántica.

la mecanica medios continuos y mecanica estadistica

la mecanica clasica

La mecánica clásica está formada por áreas de estudio que van desde la mecánica del sólido rígido y otros sistemas mecánicos con un número finito de grados de libertad, como la mecánica de medios continuos (sistemas con inifinitos grados de libertad). Existen dos formulaciones diferentes, que difieren en el grado de formalización para los sistemas con un número finito de grados de libertad:

Aplicados al espacio euclídeo tridimensional y a sistemas de referencia inerciales, las tres formulaciones son básicamente equivalentes.

Los supuestos básicos que caracterizan a la mecánica clásica son:

  • Predictibilidad teóricamente infinita, matemáticamente si en un determinado instante se conocieran (con precisión infinita) las posiciones y velocidades de un sistema finito de N partículas teóricamente pueden ser conocidas las posiciones y velocidades futuras, ya que en principio existen las funciones vectoriales \displaystyle\{\vec{r}_i=\vec{r}_i(t;\vec{r}_i^{(0)},\vec{v}_i^{(0)})\}_{i=1}^N que proporcionan las posiciones de las partículas en cualquier instante de tiempo. Estas funciones se obtienen de unas ecuaciones generales denominadas ecuaciones de movimiento que se manifiestan de forma diferencial relacionando magnitudes y sus derivadas. Las funciones \displaystyle\{\vec{r_i}(t)\}_{i=1}^N se obtienen por integración, una vez conocida la naturaleza física del problema y las condiciones iniciales.

bienvenido

los invito a conocer sobre la mecanica y sus derivados